A benchmark study on mantle convection in a 3-D spherical shell using CitcomS

نویسندگان

  • Shijie Zhong
  • Allen McNamara
  • Louis Moresi
  • Michael Gurnis
چکیده

[1] As high-performance computing facilities and sophisticated modeling software become available, modeling mantle convection in a three-dimensional (3-D) spherical shell geometry with realistic physical parameters and processes becomes increasingly feasible. However, there is still a lack of comprehensive benchmark studies for 3-D spherical mantle convection. Here we present benchmark and test calculations using a finite element code CitcomS for 3-D spherical convection. Two classes of model calculations are presented: the Stokes’ flow and thermal and thermochemical convection. For Stokes’ flow, response functions of characteristic flow velocity, topography, and geoid at the surface and core-mantle boundary (CMB) at different spherical harmonic degrees are computed using CitcomS and are compared with those from analytic solutions using a propagator matrix method. For thermal and thermochemical convection, 24 cases are computed with different model parameters including Rayleigh number (7 10 or 10) and viscosity contrast due to temperature dependence (1 to 10). For each case, time-averaged quantities at the steady state are computed, including surface and CMB Nussult numbers, RMS velocity, averaged temperature, and maximum and minimum flow velocity, and temperature at the midmantle depth and their standard deviations. For thermochemical convection cases, in addition to outputs for thermal convection, we also quantified entrainment of an initially dense component of the convection and the relative errors in conserving its volume. For nine thermal convection cases that have small viscosity variations and where previously published results were available, we find that the CitcomS results are mostly consistent with these previously published with less than 1% relative differences in globally averaged quantities including Nussult numbers and RMS velocities. For other 15 cases with either strongly temperature-dependent viscosity or thermochemical convection, no previous calculations are available for comparison, but these 15 test calculations from CitcomS are useful for future code developments and comparisons. We also presented results for parallel efficiency for CitcomS, showing that the code achieves 57% efficiency with 3072 cores on Texas Advanced Computing Center’s parallel supercomputer Ranger. G Geochemistry Geophysics Geosystems

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Radial Basis Function-Pseudospectral Method for Thermal Convection in a 3-D Spherical Shell

A novel hybrid spectral method that combines radial basis function (RBF) and Chebyshev pseudospectral (PS) methods in a “2+1” approach is presented for numerically simulating thermal convection in a 3D spherical shell. This is the first study to apply RBFs to a full 3D physical model in spherical geometry. In addition to being spectrally accurate, RBFs are not defined in terms of any surface ba...

متن کامل

Thermal Convection in Europa’s Silicate Mantle

We perform numerical simulations in 3D spherical geometry to study the properties of convection in Europa’s silicate mantle using the finite-element code CitcomS including temperature-dependent viscosity. Our simulations show that thermal convection occurs if the reference viscosity is – PaS, rheological activation energy is 150-300 kJ/mol, and the viscosity contrast (due to temperature variati...

متن کامل

DEGREE-1 MANTLE CONVECTION AND THE ORIGIN OF THE MARTIAN HEMISPHERIC DICHOTOMY. James

The hemispheric dichotomy on Mars is largely an expression of varying crustal thickness [1]. Although there is some disagreement as to the timing of its formation, the dichotomy is very old, forming during or before the early Noachian [2]. Several formation mechanisms, including both exogenic (giant impacts) [3] and endogenic processes including mantle convection [4], plate tectonics [5], and o...

متن کامل

Low-degree mantle convection with strongly temperature- and depth-dependent viscosity in a three-dimensional spherical shell

A series of numerical simulations of thermal convection of Boussinesq fluid with infinite Prandtl number, with Rayleigh number 10, and with the strongly temperatureand depthdependent viscosity in a three-dimensional spherical shell is carried out to study the mantle convection of singleplate terrestrial planets like Venus or Mars without an Earth-like plate tectonics. The strongly temperature-d...

متن کامل

Dynamics of thermochemical plumes: 1. Plume formation and entrainment of a dense layer

[1] Density variations due to changes in bulk chemistry in the lowermost mantle play an important role in the dynamics and chemistry of plumes. In this study we perform a series of high-resolution numerical experiments in an axisymmetric spherical shell to systematically investigate the formation of plumes from a thermochemical boundary layer and the entrainment of the dense material by plumes....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008